Hiperbolik
sekant:operatorname sech,x left(cosh x
ight)^-1 frac 2 e^x + e^-x frac 2e^x e^ 2x + 1 Hiperbolik kosekant:operatorname
Kaynak: Hiperbolik fonksiyonKesen (veya
sekant,
sekant doğrusu), bir eğri yle iki noktada kesişen doğru. Kesenin eğri içinde kalan parçasına kiriş adı verilir.
Kaynak: KesenSekant,
sekant doğrusu veya kesen , bir kirişin doğruya uzatılmış halidir. Diğer bir ifadesiyle, kiriş bir kesenin çember içinde kalan
Kaynak: Kiriş (geometri) Eğer seri
sekant fonksiyonu ilgili faktöriyelleri ile ifade edilecekse,kombinatorik yorumlamada,kardinal teksayıların sonlu sayıda
Kaynak: Trigonometrik fonksiyonlarburada csch hiperbolik kosekant , ve sech hiperbolik
sekant 'tır. align center | footer iki tür Poinsot spiralleri için örnekler | image1
Kaynak: Poinsot spiralleriDaha sonra Araplar, yay kirişlerinin yerine sinüsleri koyup; tanjant , kotanjant ,
sekant , kosekant kavramlarını geliştirdiler.
Kaynak: Trigonometri tarihiGeleneksel ya da
sekant ojiv , Gotik mimari yi oluşturan aynı eğrinin dönel yüzey idir. Diğer bir deyişle, silindir kısmının ("gövde")
Kaynak: OjivDaha sonra Araplar, yay kirişlerinin yerine sinüsleri koyup; tanjant , kotanjant ,
sekant , kosekant kavramlarını geliştirdiler.kaynak
Kaynak: TrigonometriEbu'l Vefa, Habeş el Hasib ve El Mervezi gibi önemli matematikçileri izleyerek tanjant ve
sekant fonksiyonlarını tanımladı.
SekantKaynak: Ebu'l Vefa el-BuzcaniAyrıca bu nesnenin hiperbolik
sekant dağılımı ilede bağlantısı vardır. Hızlı yakınsak seri: sayısal hesaplama için kolay olan birbirini
Kaynak: Catalan sabitiOYF bir hiperbolik
sekant fonksiyonunun karesi şeklinde olduğu görülür. Kuantil fonksiyonu : Logistik fonksiyon için ters yığmalı dağılım
Kaynak: Logistik dağılımBir açının
sekant ı, tümlerinin kosekant ına eşittir. Ayrıca bakınız : Bütünler açılar Üçgen ler. Kategori:Açı Kategori:Temel geometri
Kaynak: Tümler açılarBunun yanında Newton metodu ,
sekant metodu , yanlış pozisyon metodu , Müller metodu ve Brent metodu gibi algoritmalar kök bulmada
Kaynak: Kök bulma algoritmasıBundan başka
sekant ve kosekantın işteş fonksiyonalrını keşfetmiş ve O'nun gölgelerin tablosu olarak adlandırdığı,kosekantlar hakkındaki
Kaynak: Battanî